A numerical study of variable depth KdV equations and generalizations of Camassa–Holm-like equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical study of variable depth KdV equations and generalizations of Camassa-Holm-like equations

In this paper we study numerically the KdV-top equation and compare it with the Boussinesq equations over uneven bottom. We use here a finite-difference scheme that conserves a discrete energy for the fully discrete scheme. We also compare this approach with the discontinuous Galerkin method. For the equations obtained in the case of stronger nonlinearities and related to the Camassa-Holm equat...

متن کامل

Variable Depth Kdv Equations and Generalizations to More Nonlinear Regimes

We study here the water waves problem for uneven bottoms in a highly nonlinear regime where the small amplitude assumption of the Korteweg-de Vries (KdV) equation is enforced. It is known that, for such regimes, a generalization of the KdV equation (somehow linked to the CamassaHolm equation) can be derived and justified [Constantin and Lannes, Arch. Ration. Mech. Anal. 192 (2009) 165–186] when...

متن کامل

A numerical solution of variable order diusion and wave equations

In this work, we consider variable order difusion and wave equations. The derivative is describedin the Caputo sence of variable order. We use the Genocchi polynomials as basic functions andobtain operational matrices via these polynomials. These matrices and collocation method help usto convert variable order diusion and wave equations to an algebraic system. Some examples aregiven to show the...

متن کامل

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

On symmetries of KdV-like evolution equations

It is well known that provided scalar (1+1)-dimensional evolution equation possesses the infinitedimensional commutative Lie algebra of time-independent non-classical symmetries, it is either linearizable or integrable via inverse scattering transform [1, 2]. The standard way to prove the existence of such algebra is to construct the recursion operator [2]. But Fuchssteiner [3] suggested an alt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2012

ISSN: 0377-0427

DOI: 10.1016/j.cam.2012.05.010